
This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/rec.13274 

 

Limited long-term effectiveness of roller-chopping for managing woody encroachment 

 

David J Eldridge and Jingyi Ding* 

 

 

Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, 

University of New South Wales, Sydney, New South Wales 2052, Australia.  

 

Author contributions: DJE designed the study and wrote the first draft; DJE, JD analysed 

the data and edited the manuscript. 

 

*Corresponding author: jingyi.ding@student.unsw.edu.au; Tel: + 61 2 9385 2194; Fax: + 61 

2 9385 1558 

 

Running header: Roller-chopping for shrub removal 

 

Abstract 

 

The encroachment of woody plants into grasslands, woodland and savanna has increased 

markedly over the past century, prompting the use of different physical methods to remove 

woody plants and restore grasses. Roller-chopping is used extensively in the Americas, but 

little is known about its long-term effectiveness for restoration, and whether its 

effectiveness varies with the intensity of encroachment. We compared the effects of roller-

chopping, under three treatment intensities (control, single treatment, double treatment), on 

woody plant density, ground cover and groundstorey plants at sites of low, moderate and 

high woody plant density in a semi-arid eastern Australian woodland over 10 years. Both 

single and double treatment significantly altered the size distribution of Dodonaea viscosa, 

which comprised more than 85% of woody plants at all sites. Thus, roller-chopping changed 

the size distribution of the community from an even-size distribution to one dominated by 

shorter plants, irrespective of initial encroachment level. The effectiveness of roller-
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chopping was strongly site-specific, with significant reductions in density at low- and high-

density sites, but no clear trend in relation to the intensity of treatment (i.e., single cf. double 

treatment). The effectiveness of roller-chopping was unsustained over the long term, with 

the suppressive effect on woody density diminishing over time. Grass cover increased with 

increasing intensity of woody removal, but only at the low-density site and with some ill-

defined, variable and short-term effects on plant composition. Managers should consider 

that the short-term effects may not adequately reflect the long-term results of woody plant 

removal using the roller-chopper. 
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Implications for Practice 

 

• The effects of roller-chopping on plant density, cover and composition varied with 

woody plant density and was highly variable over time.  

 

• Programs that aim to restore encroached woodlands and grasslands should consider 

whether the target plants are resprouters. 

 

• Although long-term control is unlikely, short-term reductions may be useful in some 

situations such as reducing vegetation cover along roads and tracks 

 

Introduction  

 

Woody plant encroachment, characterized by an increase in woody cover and density, is a 

global phenomenon that has affected extensive areas of grasslands, open woodlands and 

savanna over the past century (Eldridge et al. 2011; Archer & Predick 2014; Stevens et al. 

2016). Encroachment is thought to result from a number of causal mechanisms including 

overgrazing by livestock, increases in atmospheric carbon dioxide levels, reductions in the 
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frequency and intensity of fire that remove woody seedlings, and more recently, extirpation 

of top predators that indirectly suppress woody seed harvesting (Bond & Midgley 2012; 

Eldridge et al. 2013; Gordon et al. 2017; Wilcox et al. 2018).   
 

The literature is replete with many examples of the negative effects of woody plants on 

ecosystems, particularly those where pastoralism is the primary land use (e.g. Schlesinger et 

al. 1990; Archer et al. 2011). Because encroachment is generally associated with reductions 

in grass and herbaceous cover, it has the potential to threaten the social and ecological 

viability of pastoral enterprises. An increasing body of literature, however, suggests that 

encroachment is a response to alterations to ecosystem disturbance and therefore represents 

a recovery process that is critical for restoring ecosystem functions and services (Maestre et 

al. 2009, 2016). Aggregations of woody plants often form ‘fertile islands’ (Bolling & 

Walker 2002) beneath their canopies, which support greater nutrient concentrations (Ward 

et al. 2018), more diverse fungal and bacterial populations (Ochoa-Hueso et al. 2018), and 

potentially, greater richness of groundstorey protégé species (species that benefit from 

growing beneath larger plants; Soliveres & Eldridge 2020). However, despite the many 

putative ecosystem benefits of woody plants, even under encroached conditions (Eldridge & 

Soliveres 2015), woody encroachment is still regarded as a symptom of poor ecological 

health, particularly in systems that rely heavily on forage production to support livestock 

grazing (Eldridge & Soliveres 2015). Considerable capital has been invested worldwide in 

an effort to remove woody plants and reverse the loss of herbaceous plants on which 

pastoralism depends, generally with limited long-term success (Ding & Eldridge 2019). 

 

Physical (mechanical) and chemical (herbicide) methods, burning and browsing have been 

used to manage woody (shrub, brush) encroachment worldwide, predominantly in arid and 

semiarid environments (Archer et al. 2011). Some of this work, which is supported by 

government initiatives, such as the Restore New Mexico program in the United States of 

America (USA; www.blm.gov/press-release/blm-grassland-restoration-treatments-begin-

southern-new-mexico), and similar programs in Mexico (Schindler et al. 2004) and 

Australia (CWCMA 2010) aim to support land managers to maintain productive pastoral 
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enterprises in the belief that removal of woody plants will result in increasing forage (grass) 

production. Physical removal is a particularly favoured way to remove woody plants, with 

variable methods depending on the situation. All physical methods involve the removal of 

aboveground woody biomass in different ways and have different effect on soils. For 

example, methods involving pushing (bulldozing), chaining (chain dragged between two 

bulldozers; Stephens et al. 2016), cutting and mowing (Liu et al. 2019) result in minimal 

soil disturbance. Root ploughing (Robson 1995; Weiderman & Kelly 2001) maintains soil 

structure and above-ground material in situ but severs the roots below the surface, and 

roller-chopping (rolling and chopping) severs and cuts above-ground material.  

 

Roller-chopping has been used widely to manage woody plants in rangelands, particularly 

in dry regions (e.g. Argentina and USA). Unlike mowing and root ploughing, roller-

chopping severs vegetative material into small segments and creates indentations on the soil 

surface that are designed to trap seeds and organic matter and prevent soil loss (Bozzo et al. 

1992; Schindler et al. 2004). Roller-chopping has been used to reduce shrub cover to 

promote herbaceous biomass and cover (Adema et al. 2004; Sabattini et al. 2018), to 

improve water capture and storage (Adema et al. 2004), soil condition (Ledesma et al. 2018) 

and microbial activity (Anriquez et al. 2005). It is regarded as a relatively cheap method of 

managing dense stands of fire-resistant woody species (Huffman & Werner 2000) such as 

saw palmetto (Serenoa repens; Tanner et al. 1988) without reducing soil quality (Kunst et 

al. 2016). It has also been shown to have few effects on tree species diversity (Rejžek et al. 

2017) and generally no negative effects on birds (Fitzgerald & Tanner 1992; Willcox & 

Giuliano 2011), though it can alter plant functional diversity (Steinaker et al. 2016). Its 

effectiveness can be enhanced by seeding with grass species (Blanco et al. 2005). In 

Australia, there have been few attempts to test the effectiveness of roller-chopping as a 

woody control method despite its relatively lower cost than other physical methods. Roller-

chopping could have a role in suppressing woody plants due to its ability to treat a relatively 

wide area. It could also potentially stimulate herbaceous response to competitive release 

after woody removal and could help to maintain surface stability by retaining woody debris 

on the soil surface. 
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Here we report on a study based on long-term field experiment to test the effectiveness of 

roller-chopping as a restoration tool to reduce woody plant density and increase 

groundstorey plant cover where encroachment is recognised as a major environmental issue 

by pastoralists. In our study we tested three hypotheses about the long-term control of 

woody plants using a roller-chopper. Global syntheses of woody plant removal indicate that 

its effectiveness is generally short-lived, with increases in herbaceous biomass and diversity 

lasting less than five years and generally diminishing over time due to subsequent 

recruitment (Archer et al. 2011; Ding & Eldridge 2019). We expected therefore that any 

potential effects of roller-chopping on either woody plants or groundstorey communities 

would dissipate within a decade (Hypothesis 1). Effective long-term control is more 

difficult as woody density or cover increases (Bestelmeyer et al. 2018). Therefore, we 

expected that the effectiveness of control would be greater at sites of lower initial woody 

density (Hypothesis 2). Finally, we expected that a more intensive treatment (double 

rolling) would be more effective than single rolling because plants are effectively treated 

twice with a second roller placed behind the first, thereby increasing the degree of cutting 

(Hypothesis 3). Our study is the first to examine the long-term effectiveness of roller-

chopping as a woody control method under different encroachment stages in eastern 

Australia. The results provide a scientific basis for deciding whether roller-chopping is a 

viable restoration tool for managing woody cover and density over areas of eastern 

Australia that are dominated by woody plants, particularly Dodonaea viscosa. 

 

Methods 

 

Study area 

Shrub removal experiments were established at three sites characterized by different levels 

of woody density in western New South Wales, Australia in 1984; 1) low density (3125 ± 

717 shrubs ha-1; mean ± SE), Koralta, 20 km north of Little Topar (-31.63, 142.23), 2) 

moderate density (6417 ± 1255 shrubs ha-1), Langawirra, 80 km north-east of Broken Hill (-

31.38, 142.12),  and 3) high density (10375 ± 1736 shrubs ha-1), Annalara north-west of 
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Wilcannia (-31.25, 143.93). Most sites in the area were developed by European pastoralists 

in the mid-19th century as large pastoral stations. The three properties would have been 

established sometime in the mid-20th century when larger holdings were subdivided. 

Differences in woody plant density at the three sites could be due to variable levels of 

historic overgrazing, given the known links between grazing intensity and woody density 

(Eldridge et al. 2013). The low-density site was located in the middle of a large paddock 

whereas the moderate and high-density sites were located within holding paddocks that 

periodically supported large numbers of sheep during routine shearing operations, and 

would therefore have been subjected to high grazing intensities. All three sites occur on 

extensive plains and sandplains of deep Quaternary alluvium, with slopes to 1%, and 

isolated low sandy rises and occasional depressions (Walker 1991). The soils vary slightly 

among the three study sites. Soils at low and moderate-density sites are typically coarser 

(less clay) and dominated by red sandy earths or calcareous red earths (Calcarosols, Isbell 

2016; low-density site) or calcareous loamy sands (Calcarosol; moderate-density site) with 

predominantly sandy and loamy sand surface textures. Soils at the high-density site are 

predominantly calcareous earths (Gc2.13) and red duplex soils (Dermosol) with sandy loam 

to clay loam surface textures. Average temperatures across the three sites range from 35.6oC 

for the three summer months to 18.3oC during the three winter months. Average rainfall 

varies from 223 mm (low-density) to 290 mm (high-density), with about 23% more rainfall 

in the six warmer months (September-February; Supplementary Material Fig. S1). The 

vegetation community across the three sites is mapped as Sandplain Mulga Shrubland 

(Keith 2004), but with slight differences in species composition among sites. Low- and 

moderate-density sites supported a community dominated by a mixture of mulga (Acacia 

aneura), nelia (Acacia loderi), rosewood (Alectryon oleifolius), punty bushes (Senna spp.), 

narrow-leaved hopbush (Dodonaea viscosa) and black bluebush (Maireana pyramidata). 

The tree and shrub layer at the high-density site comprised a mixture of belah (Casuarina 

cristata), leopardwood (Flindersia maculosa), black bluebush, narrow-leaved hopbush, 

turpentine (Eremophila sturtii) and budda (Eremophila duttonii). All of these shrubs are 

reseeders, but Eremophila spp. and Dodonaea viscosa are also known to reshoot from 

epicormic and belowground buds (Wiedemann & Kelly 2001, Vesk et al. 2004). The 
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groundstorey at all sites was dominated by semi-perennial grasses such as Austrostipa and 

Aristida spp., and forbs such as Sclerolaena spp., Goodenia spp., and Atriplex spp., 

depending on seasonal conditions. This study was carried out under slightly above-average 

rainfall conditions at the low (Koralta; 25% above average) and moderate (Langawirra, 33% 

above average) density sites, but conditions at the high-density site (Annalara) were 65% 

above average values. Rainfall values at the end of the study were average at all three sites 

(Fig. S1). 

 

Site establishment and treatment  

At each site we established an area of about 500 m by 500 m within a relatively uniform 

community dominated by dense shrubs and small trees. Within that site we established 12 

plots arranged in a 6 x 2 configuration. Each plot was 60 m long by 40 m wide, with a 10 m 

buffer around all edges. The 12 plots were randomly assigned to three treatments: i) control 

(no roller-chopping), ii) single treatment (tandem), where two rollers were placed side-by-

side, and iii) double (offset) treatment, where one roller was placed behind the first roller 

but slightly offset. The plots were rolled and chopped with a Marden ® Roller-Chopper 

(Model L7) pulled by a Caterpillar D-4 tractor. All sites were treated between May and June 

1984. The Marden L7 roller-chopper has a drum length of 2.2 m and a drum diameter of 

0.62 m, yielding a water-filled weight of 3.6 tonnes. A series of metal blades welded to the 

drums, and parallel to the axis, are capable of severing the stems of woody plants up to 15 

cm in diameter (Schindler et al. 2004). Because of the spacing of the blades, vegetation is 

severed into pieces about 20 cm long, and the roller-chopper creates a series of parallel 

grooves in the soil surface about 10 cm deep and 15 cm wide, depending on soil texture. 

These grooves are designed to trap water and seeds and therefore hasten revegetation. Cost 

of this method at the time of treatment (1984) was about AUD 33 ha-1, or AUD 86 ha-1 in 

2020 dollars. 

 

Plant measurements 

We used the step-point method (Everson & Clarke 1987), a form of the point-intercept 

method, to record plant species cover, soil surface cover and to calculate plot-level plant 
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richness. We criss-crossed each plot and recorded each plant by species (< 50 cm tall), bare 

soil or litter cover found beneath each of 1000 points. Shrubs or groundstorey plants > 50 

cm were recorded if their canopy was located directly above a point. Using these data, we 

calculated total plant (litter, or bare soil) cover as the percentage of points where a plant, 

litter or bare surfaces was recorded. Plant richness was calculated as the total number of 

plant species recorded using step-pointing plus any additional plants found on the plots. 

Measurements were made before treatment (1984), 3 years post-treatment (1987) and 10 

years post-treatment (1994).  

 

Statistical analyses 

We used a split-plot ANOVA to examine the effects of the three treatments, three time 

periods, and their interactions, on shrub density, plant richness, grass cover, forb cover, bare 

soil cover and litter cover. Our model had two strata. The first stratum examined time 

effects (n = 3); pre-treatment, early recovery (3 years post-treatment) and late recovery (10 

years post-treatment). The second stratum examined treatment effects (n = 3) and their 

interaction with time. Analyses were undertaken in Genstat 19.1 (VSN International). The 

residuals were checked for equal variance and normality with Levene’s test prior to 

analyses, but did not require transformation. Significant post-hoc differences in means were 

examined using Tukey’s LSD test. We examined potential differences in groundstorey plant 

species assemblages among years, treatments, and their interaction using permutated, non-

metric multivariate analysis of variance (PERMANOVA; Anderson 2017) using the Bray-

Curtis similarity matrix (Gauch Jr 1973) and the same model structure as used in the 

univariate analyses. We then used Indicator Species Analysis, with the ‘indicspecies’ 

package in R (De Caceres & Legendre 2009) to identify those species that were indicative 

of different years or treatments. 

 

Results 

 

Shrub density and population structure  
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Shrub composition varied among sites, with low and moderate density sites dominated by 

Dodonaea viscosa (99% by density), with a few scattered Acacia aneura, whereas the high 

density site supported a greater diversity of shrubs including Eremophila sturtii, Acacia 

spp., Grevillea striata, Senna artemesioides, Senna eremophila and Hakea leucoptera. 

Dodonaea viscosa comprised 85% of shrubs, by density, at the high-density site. 

 

Ten years after treatment (Table 1), average shrub cover of each site was lowest at the high-

density (11%), intermediate at the low-density (28%) and greatest at the moderate-density 

site (46%). On the untreated (control) plots, shrub density declined naturally over the 10 

years by an average of 51%, 26% and 8% at high, low, and moderate density site, 

respectively (Fig. 1).  

 

The effectiveness of roller-chopping for reducing woody plant density varied among sites 

and times (Fig. 1). For example, at the low-density site both the single and double 

treatments significantly reduced total shrub density (F2,18 = 4.52, P = 0.026), and this 

reduction persisted until 10 years after removal. At the high density site, total shrub density 

declined from 9,583 shrubs ha-1 in the control plots to 6,375 shrubs ha-1 under the single 

treatment, with a significant reduction to 3,049 shrubs ha-1 under the double treatment (F2,18 

= 22.1, P < 0.001). Under moderate density, however, we found no effect of roller-chopping 

on total shrub density (P = 0.18), and this was consistent across time. There were no 

significant time by treatment interactions for any of the three sites. 

 

The size distribution of shrubs also varied with treatment across sites. Under low density, 

shrubs were moderately right-skewed with some very large (> 4 m high) shrubs on the 

control plots but left-skewed with more smaller shrubs (< 25 cm high) persisting in the 

absence of any removal treatment a decade after treatment (Fig. 2). Under moderate density, 

the distribution of shrub sizes was relatively symmetrical within the control plots, with 

some small and some large shrubs, and a median height of 100-150 cm, but highly skewed 

to smaller size classes under both single and double treatments 10 years later. On the control 

plots under high woody density site, size classes of Dodonaea viscosa were skewed to 
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smaller size classes with a median pre-treatment height of 50-100 cm. This remained 

relatively unchanged 10 years after treatment (Fig. 2). The median heights of shrubs at low 

and moderate density sites declined from height classes of 150 to 250 cm in the controls, to 

the 50 to 100 cm class under the double treatment. At the high-density site however, median 

shrub heights remained unchanged under the single treatment (100 to 125 cm) and increased 

(125 to 150 cm) under the double treatment. Over all sites, both roller-chopper treatments 

(single, double) resulted in highly skewed populations dominated by generally short 

(<25 cm tall) shrubs in the long term (Fig. 2).  

 

Groundstorey plant community  

Over all sites and treatments, bare soil cover was generally high (55.6 ± 5.5%; mean ± SE) 

and plant cover sparse (26 ± 5.1%; Table 1). There were no significant differences in total 

groundstorey plant cover, litter cover or bare soil a decade after treatment on any site or 

under any treatment (Table 1). When we examined changes in two major plant functional 

groups (forbs and grasses), we found some effects of treatment and time (Fig. 3). For 

example, grass cover increased with intensity of treatment at the low-density site only 

(F2,18=11.47, P < 0.001; Fig. 3d), but there was no effect of roller-chopping on forb cover at 

any site (Fig. 3). There were also some ill-defined temporal effects on both forb and grass 

cover (Fig. 3d-f), and significant time by treatment interactions for both forb cover (F4,18 = 

7.72, P = 0.001; Fig. 3a) and grass cover (F4,18 = 5.74, P = 0.004; Fig. 3d), but only at the 

low-density site. These interactions indicated that at the low-density site only, there was 1) 

no temporal changes in forb cover in the control plots, but greater forb cover at 10 years 

under the double roller-chopper treatments, and 2) substantially reduced grass cover under 

both single and double treatments 3 and 10 years after treatment (Fig. 3d).  

 

We also detected some effects of roller-chopping on species richness, with significantly 

lower richness on control than treated plots at moderate (F2,18 = 4.55, P = 0.025) and high 

(F2,18 = 5.03, P = 0.018) density sites, but no treatment effects under low density (Fig. 1d-f). 

There were also some effects of time since removal, but these were inconsistent across 

different sites. For example, there were no temporal differences in richness at moderate and 
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high-density sites, but at low-density sites, average plot richness declined over time (F2,9 = 

177.5, P < 0.001; Fig. 1d).  

 

When we examined the effects of roller-chopping on plant composition we found two main 

effects. First, plant composition on treated (single, double) plots was significantly different 

from that on control plots, but only at low (pseudo F = 2.68, P-perm = 0.002) and moderate 

(pseudo F = 2.60, P-perm = 0.004) density sites (Fig. S2). Second, there were significant 

differences among years, particularly between the pre-treatment Year 0 and 10 years after 

treatment (Fig. S2). We found no obvious species that were strong and consistent indicators 

of different times or treatments (Table S1). However, perennial grasses such as Eragrostis 

dielsii, Aristida jerichoensis var. jerichoensis, Aristida contorta, Enneapogon avenaceous 

and Eragrostis spp. tended to be strong indicators of both low and moderate density sites, 

particularly 10 years after treatment (Table S1). 

 

Discussion  

 

Marked increases in woody plant encroachment in open woodlands, savanna and grasslands 

over the past century have intensified the use of multiple, generally physical, methods to 

control woody plants in order to reinstate the original grassland vegetation (Scifres et al. 

1985) which sustains pastoral enterprises (Blanco et al. 2005). Our study showed that the 

effectiveness of roller-chopping was strongly site specific, with significant reduction in 

shrub density at sites of high and low initial shrub densities, but not at the moderate density 

site, and with no clearly defined effect due to different treatment intensity (i.e., single or 

double roller configurations). Consistently, however, the effectiveness of roller-chopping for 

removing mature shrubs from all sites was to shift a shrub community with an even 

distribution of sizes to one dominated by many shorter shrubs, either by stimulating seed 

fall and recruitment, or recovery (resprouting) of existing severed shrubs. In addition, roller-

chopping had some effects on groundstorey plants, such as changes in plant composition, 

generally increasing forb cover and reducing grass cover. Strong temporal changes in plant 

composition were likely driven by shifts in rainfall among years. Furthermore, shrub 
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densities declined naturally by 11 to 46% over the decade-long study in the absence of any 

treatment (control sites), a phenomenon that was likely associated with increasing 

competition for resources, and potentially, drying climatic conditions during the study 

period, particularly at the high density site (Bureau of Meteorology 2019). Furthermore, our 

study provides empirical evidence that treatment effectiveness is generally short-lived, with 

either single or double treatment configuration failing to sustain viable control over a 

decade. Further, our study was conducted more than three decades ago under climatic 

conditions that are different from current conditions. Modern responses to roller-chopping 

may well differ from those experienced three decades ago. Overall, our results suggest that 

a one-off roller-chopper treatment is unlikely to restore woody encroached grasslands.  

 

Effectiveness of roller-chopping is site specific and short lived 

Grazing, fire, herbicides and mechanical methods have all been used to control woody 

encroachment, but with variable success (e.g., Moore & Walker 1972; Gonzalez 1990; 

Harland 1992; Robson 1995; Booth et al. 1996; Adema et al. 2004; Schindler et al. 2004). 

We found that the effectiveness of roller-chopping for removing shrubs was highly site 

specific, consistent with a global synthesis that indicated strongly nuanced effects dependent 

on soil type, woody plant traits, and removal method (Ding & Eldridge 2019). For example, 

in our study, the effectiveness of removal varied with the pre-treatment encroachment status. 

Contrary to prediction, the greatest density decline was at the site with the greatest initial 

density, which seems at odds with the notion that heavily encroached sites are relatively 

stable and resistant to disturbance (Bestelmeyer et al. 2018). However, most shrubs at the 

densest site were short (50-100 cm high) and likely to be more susceptible roller-chopping. 

Smaller shrubs would also likely carry a smaller seed load, and support a lower level of 

recruitment a decade after treatment. By comparison, the moderate-density site comprised 

more medium-sized shrubs (100-150 cm high), which would have been more resistant to 

mechanical disturbance. Equally, Dodonaea viscosa might have reprouted more rapidly 

following treatment (Hodgkinson 1998), resulting in no overall treatments effect. 

Furthermore, we found that the effectiveness of roller-chopping dampened with increasing 

time since treatment, with any significant suppressive effect lasting only 3 years in one of 
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the three sites examined (sensu Archer & Predick 2014; Ding & Eldridge 2019). This 

finding is partly consistent with the results of global studies reporting marked reductions 

(60%) in shrub cover in the first few years following treatment (e.g., Tanner et al. 1988; 

Aguilera & Steinaker 2001; Blanco et al. 2005). Yet unlike our study, few studies have 

tracked changes in woody plant density over time frames longer than 3 years, so short-term 

studies reporting the success of roller-chopping in woody encroachment management, such 

as those reported above, may provide an overly optimistic perspective of its long-term 

efficacy. We acknowledge that our study used only a one-off treatment. Follow-up 

treatment, using further mechanical methods or herbicide, may well prove more effective in 

providing a longer-term control of woody plants, and to be effective, follow-up treatment 

would need to occur within 10 years of initial treatment. 

 

Despite site differences, removal effectiveness is likely to be driven most by treatment 

method (Archer et al. 2011; Ding et al. 2020). The main effect of roller-chopping is to prune 

plants by chopping plants into similar-sized fragments ~ 20 cm long, not necessarily at 

ground level. We expected this action to be more effective under the double treatment, but 

our hypothesis (Hypothesis 3) was upheld only at the high-density site, which supported 

both a greater richness and density of woody species. The overall insignificant effect of 

treatment configuration (single cf. double) could be due to species-specific differences in 

stem flexibility, bark thickness or susceptibility to cutting, with very little difference in 

susceptibility even when treated twice. For example, Acacia aneura, has thick bark at the 

sapling (shrub-like) stage, which might have mediated against physical chopper effects 

(Schubert et al. 2016). The other common shrub species, Senna eremophila, Eremophila 

sturtii and Eremophila latrobei ssp. glabra, are relatively short plants with thin flexible 

stems that would have been less susceptible to shearing and cutting. The regionally 

widespread Dodonaea viscosa is however moderately susceptible to mechanical control 

(Harland 1992; Robson 1995; Eldridge & Robson 1997; Daryanto 2013), with a variable 

response to roller-chopping due to its high ability to resprout from basal shoots 

(Hodgkinson 1998; Nano & Clarke 2011). 
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No long-term legacy effects on groundstorey richness or cover 

Roller-chopping has been widely used as an effective way to increase plant production 

(Kunst et al. 2012), with increasing plant cover shown in a number of studies worldwide 

such as Argentina (Passera et al. 1992) and the United States of America (Willcox & 

Giuliano 2010). In our study, we found that roller-chopping increased grass cover, but only 

at the site with low density of shrubs. Moreover, treatment effects on composition were 

mixed, with treated plots differing from control sites, at low and moderate density sites, but 

not at the high-density site. These variable effects of roller-chopping on plant community 

composition (Watts & Tanner 2003) are likely due to difference in climatic conditions 

across the sites, particularly given that high density site received, on average, about 30% 

more rainfall than the other sites. Our data also indicate a general increase in forb cover 

over time, irrespective of treatment. The failure to increase grass cover, the primary goal of 

most shrub removal treatments, could be due to the time lag between removal and plant 

response (North et al. 2005). For example, herbaceous species can take some years to 

respond to reductions in competition and greater access to resources following the removal 

of the woody overstorey (Allegretti et al. 1997; Ansley et al. 2006). Such lagged responses 

could be further dampened by the rapid re-establishment of shrubs at our sites, resulting in 

no net groundstorey response. Mixed responses could also relate to the different effects that 

shrubs have on groundstorey plants, which would depend upon trade-offs between 

facilitation (e.g. shading, hydraulic lifting; Caldwell et al. 1998) and competition (e.g. 

resource competition; Munzbergova & Ward 2002). Grasses are frequently sown as part of 

the roller-chopper treatments in order to increase pastoral production (Aguilera & Steinaker 

2001). Although grasses were not sown at our study sites, prolific grass growth following 

shrub removal could increase the effectiveness of control by increasing competition 

between grasses and shrub recruits. Future studies should examine the usefulness of 

planting grasses as part of any shrub control program.  

 

In summary, we showed that shrub suppression by roller-chopping was mixed, with little 

evidence of long-term effects on surface cover or plant community composition in our 

study. Despite the widespread use of roller-chopping as a vegetation management tool in the 
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Americas, there is little evidence that it provides long-term benefits in managing shrubs in 

Australia’s semi-arid woodlands. Our long-term study also reinforces the view that the 

effectiveness of shrub control is relatively short lived, and unlikely to be sustained over a 

decade. Encroachment, however, is likely to intensify globally in drylands as carbon dioxide 

levels increase under predicted climate changes for global drylands (Huang et al. 2016). 

This will likely place further pressure on pastoralists as they attempt to sustain their grazing 

enterprises on a declining grassland base. We repeat the call made by Eldridge & Soliveres 

(2015) for more studies of cost-effective, ecologically appropriate and environmentally 

sensitive techniques for managing woody encroachment that meet the needs of conservation 

and production-based systems. 
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Table 1. Mean (± SE) cover of plants, litter and bare soil (%) across the three sites with 

different initial shrub density and three treatments 10 year after removal. There were no 

significant treatment effects for any attributes or site.  
 

Site  Treatment 

 

Plant cover (%) Litter cover (%) Bare soil cover (%) 

Mean SE Mean SE Mean SE 

Low Control 15.6 5.4 26.1 1.0 58.3 4.5 

 Single 20.3 5.9 30.1 3.5 49.5 9.1 

 Double 20.4 5.6 27.7 2.3 51.9 7.6 

Moderate Control 52.6 2.4 0 0 47.0 2.0 

 Single 48.3 6.7 0 0 51.3 6.3 

 Double 45.0 3.1 0 0 54.5 2.8 

High Control 8.2 4.8 25.4 3.7 62.6 7.6 

 Single 11.9 5.7 22.8 1.5 62.4 3.9 

 Double 11.7 6.0 23.2 0.6 63.1 5.3 
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Figure 1. Mean (± SE) shrub density (shrubs ha-1) and plant richness (number of plant 

species) on control (C), single (S) and double (D) plots prior to treatment in 1984 (0), and 3- 

and 10-years post-treatment for sites with different initial shrub density.  
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Figure 2.  Frequency distribution of Dodonaea viscosa heights (cm) 10 years after removal 

for the three treatments at the three sites with different initial shrub density. Skewness 

values shown in parentheses.  
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Figure 3. Mean (± SE) forb cover (%) and grass cover (%) on control (C), single (S) and 

double (D) plots prior to treatment in 1984 (0), and 3- and 10-years post-treatment for sites 

with different initial shrub density. Vertical bars on (a) and (d) indicate the 5% LSD for the 

Treatment by Time interaction.  
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